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ABSTRACT

Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing
Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these
isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (International Standard Payload Rack, or ISPR)
level.

Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of
that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response
to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to
develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
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ABSTRACT

Many microgravity space-science experiments require vibratory

acceleration levels unachievable without active isolation. The Boeing

Corporation's Active Rack Isolation System (ARIS) employs a novel

combination of magnetic actuation and mechanical linkages, to

address these isolation requirements on the International Space Station

(ISS). ARIS provides isolation at the rack (International Standard

Payload Rack, or ISPR) level.

Effective model-based vibration isolation requires (1) an

appropriate isolation device, (2) an adequate dynamic (i.e.,

mathematical) model of that isolator, and (3) a suitable, corresponding

controller. ARIS provides the ISS response to the first requirement.

This paper presents one response to the second, in a state-space

framework intended to facilitate an optimal-controls approach to the

third. The authors use "Kane's Dynamics" to develop an state-space,

analytical (algebraic) set of linearized equations of motion for ARIS.

INTRODUCTION

The vibratory acceleration levels currently achievable, without

isolation on manned space structures, exceed those required by many

space-science experiments (DeLombard, et al., 1997; NASA

Specification Number SSP41000, Rev. D., 1995; DelBasso, 1996;

Nelson, 1991). Various active isolation devices have been built to

address this need. The first in space was called STABLE

("Suppression of Transient Accelerations By LEvitation"), which uses

six independently-controlled Lorentz actuators to levitate and isolate at

the experiment (or sub-experiment) level (Edberg, et al., 1996). It was

successfully flight-tested on STS-73 (USML-02) in October 1995.

Marshall Space Flight Center (MSFC) is developing a second-

generation experiment-level isolation system (g-LIMIT: "GLovebox

Integrated Microgravity Isolation Technology"), building on the

technology developed for STABLE (Whorton, 1998). This

compact system will isolate microgravity payloads in the

Microgravity Science Glovebox (MSG).

This work was supported in part by NASA grant NCC-471.
The first author submitted an earlier version as AIAA 98-0458.

A second experiment-level isolation system, called MIM

("Microgravity Vibration Isolation Mount"), was launched in the

Priroda laboratory module which docked with Mir in April 1996

(Hampton, et al., 1997). MIM uses eight Lorentz actuators, with

centralized control. It has supported several materials science

experiments since its implementation in May 1996. A modified

version of MIM (MIM II) supported additional experiments on STS-

85 in August 1997.

Boeing's Active Rack Isolation System (ARIS), in contrast to the

above payload-isolation systems, has been designed to isolate at the
rack level; an entire International Standard Payload Rack (ISPR) will

be isolated by each copy of ARIS on ISS. The Risk-Mitigation

Experiment (RME) for ARIS was conducted in September 1996 on

STS-79 (Bushnell, 1996). Each of ARIS' eight electromechanical

actuators requires a two rigid-body model; when the ISPR ("flotor") is

included, the total isolation-system model contains 17 rigid bodies.

In order to provide effective model-based isolation, the task of

controller design requires prior development of an adequate dynamic

(i.e., mathematical) model of the isolation system. This paper presents

a dynamic model of ARIS, in a state-space framework intended to

facilitate design of an optimal controller. The chosen approach is the
method of Thomas R. Kane ("Kane's method") (Kane and Levinson,

1995); the result is a state-space, analytical (algebraic) set of linearized

equations of motion for ARIS.

THE CHOICE OF KANE'S METHOD

There are fundamentally two avenues for deriving system

dynamical equations of motion: vector methods and energy methods.

Both avenues lead to scalar equations, but they have different starting

points. Vector methods begin with vector equations proceeding from
Newton's Laws of Motion; and energy methods, with scalar energy

expressions. The former category uses approaches built around (1)

Momentum Principles, (2) D'Alembert's Principle, or (3) Kane's

Method; and the latter, (1) Hamilton's Canonical Equations, (2) the

Boltzmann-Hamel Equations, (3) the Gibbs Equations, or (4)

Lagrange's Equations.



Althoughsomeproblemsmightlendthemselvesbettertosolution
byotherapproaches,Kane'smethodappearsingeneraltobedistinctly
advantageousfor complexproblems.As a rule, of the abovc

approaches, those that lead to the simplest and most intuitive

dynamical equations are the Gibbs Equations and Kane's Equations.

And of those two approaches the latter is the more systematic and

requires less labor. The reduction of labor is particularly evident when

one seeks linearized equations of motion, as proved to be necessary in

the present case (due to the otherwise excessive algebraic burden).

An overview of Kane's approach to developing linearized

equations of motion is presented in (Hampton, et al., 1998), along with

a summary of the relative advantages of the method. See Kane and

Levinson (1979, 1985) for more extended treatments.

DESCRIPTION OF ARIS

The total dynamical system S consists of the stator S (ISS and

the integral frame, from the motion of which ARIS isolates the ISPR),

the flotor F (the ISPR), eight electromechanical actuator assemblies,

and the umbilicals. (See Figure I.) The flotor is connected to the

stator by the eight actuator assemblies, and by a variable number of

umbilicals. The actuator assemblies also (and Ihndamentally) act as

the vibration isolation devices.

Each actuator assembly consists of a Lorentz (voice-coil)

actuator, an arm, an upper stinger, a push-rod, a lower stinger, and a

position sensor. (See Fig. 2 for a kinematic diagram, and Fig. 3 for a

CAD drawing, of a single actuator.) One end of each actuator arm is

connected to the flotor through a cross-flexure which allows the flotor

a single rotational degree of freedom with respect to the stator. The

other end of the arm is connected to one end of the push-rod through

the upper stinger, a wire of very high torsional stiffness. Each upper

stinger provides two rotational degrees of freedom in bending. The

opposite end of the push-rod is connected to the stator through the

lower stinger, another short wire which allows three rotational degrees

of freedom (two in bending, one in torsion) with respect to S.

Each stinger is modeled as a massless spring. The umbilicals are also

considered to be massless; they are modeled together as a single,

parallel spring-and-damper arrangement, attached at opposite ends to
stator and flotor at effective umbilical attachment points S, and F,,

respectively. This effective umbilical applies both a force and a
moment to the flotor. The force is assumed to act at point F,,.

Figure 1. ARIS Control Assembly

The stator, the flotor, and each actuator arm and push-rod are

considered to be rigid bodies, with mass centers at points

S; F_ A,; and _ respectively. The superscript * indicates the mass

center of the indicated rigid body; the subscript i corresponds to the (h

actuator. (i= 1..... 8). All springs (cross-flexures and stingers) are

assumed to be relaxed when the ISPR is centered in its rattlespace (the

"home position").

COORDINATE SYSTEMS

With the ISPR in the home position, fix eight right-handed,

orthogonal coordinate systems in the flotor, one at each of the cross-

flexure centers. Let the i'h coordinate system (i = 1..... 8) have origin

Fi (i = 1..... 8) located at the center of the i'h cross-flexure, with axis

directions determined by an orthonormal set of unit vectors

Z'i(j=l,2,3). (The overhat indicates unit length, the index /

corresponds to the i 'h actuator assembly, and the index j distinguishes
^,

the three vectors.) Orient the unit vectors such that f_ is along

^i

the iIh arm, toward the ilh voice coil; f] is directed parallel to the other

segment of the i'h arm and toward the upper stinger (which is located
^i ^i ^i

at Z_ ); and f3 is in the direction fl ×f2 (along the intersection of

the two cross-pieces of the ith cross-flexure).

I,OI_,EN IZ COIL

?A_ {lppet Stitlg_

C_oss-Ilex_c _ Pll_h-rod

S;

STATOR _

Lowe¢ Slinge.r

/ i i
(aagl_ q4 ,qs ,q6)

Figure 2. Kinematic Diagram, Including the i'h Actuator

Assembly and the Umbilical

^i(.=1,2,3) inFix a similar right-handed coordinate system aj,,j

^i

the arm of each actuator. Locate each system aysuch that it is

coincident with the corresponding flotor-fixed coordinate system
^i

f. when the flotor is in the home position.
--1

At the respective lower stingers (points S,), place eight push-rod-

fixed coordinate systems /3i, and eight stator-fixed coordinate
2.._j



_ Attachmen; point

Attachment poixttto ISS

Figure 3. A Single ARIS Actuator

^i
systems s i . Orient these 24 coordinate systems such that when the

stingers are relaxed (i.e., with the ISPR in the home position), the

coordinate directions _i/, and -J_i are co-aligned for the ith actuator,

with /3i (along with _i1, in the home position) directed from Si

toward A_.

Define finally a primary, central, flotor-flxed, reference coordinate

system with coordinate directions ?.. All other flotor-fixed coordinate
--1

^i

systems fj are assumed capable of being referenced (e.g., by known

direction cosine angles) to this system. [See Equation (4).]

ROTATION MATRICES

^i
^i . "v

Let the aj coordinate system rotate, relatl e to the f. coordinate
-- __j

^i

system, through positive angle ql about the ---f3 axis. Similarly, let the

^i . ^i coordinate
orientation of the aj coordinate system, relative to the __pj

system, be described by consecutive positive rotations q_ (about the

Pl^i axis) and qi3 (about the moved 3-axis). And let the orientation of

^i

the __pj coordinate system, relative to the -J_i coordinate system, be

described by consecutive positive rotations q_ (about the _s_ axis),

qi (about the moved 2-axis), and q_ (about the moved l-axis).5

i and iLet cj sj represent the cosines and sines of the respective

i
angles qj. Then the rotation matrices among the several coordinate

systems for the ith actuator assembly are as follows:

illi ^i
^t i i sic i _S 5 Stel C4C5 4 5 -

^i ii iii
c4c6+,,,sss(, c s6 s2 , (l)l_p2_=]_s4c6 ..i.c455s6 i i i ii i i ^i

^i i i i i i _c4s 6+$4S5C 6 c5c6j[s] /[P3J L $4$6+c4s5c6 i i i i i i i ^i

lr 1C3 C2S3 $2S3 t31

i ii ii ^i

[os s2c311p__,l (2)

[_a3J -s2 c; j[ Tj

and [a3j]a_l = [-0Sl Cl0 01Jl_tI.__ (3)

Finally, define a rotation matrix between the eight flotor-fixed

coordinate systems

coordinate system Zj

^i

f and the

_'i] [ fIll: t:V '
?',] W;,

single, flotor-fixed, reference

fl_ fl'3 fl

1.7 i  J{LJ
(4)

GENERALIZED COORDINATES FOR

The 48 angles q_ are the generalized coordinates of the system.

For the i th actuator the six associated generalized coordinates are as

follows: ql is the angle at the cross-flexure of the i th actuator; q_ and

q_ are the angles at the upper stinger; and q,_,q_ and q_ are the

angles at the lower stinger.

GENERALIZED SPEEDS FOR

Define generalized speeds uij for the system as the time rate of

change of the generalized coordinates of S in the inertial reference

i -i •
= qj (for j=l ..... 6; i=1 ..... 8) (5)frame: u j

ANGULAR VELOCITIES OF REFERENCE

FRAMES AND RIGID BODIES

Designate the reference frames corresponding to the stator, the

i 'h push rod, the i th arm, and the flotor, by the symbols S, _., ,_-,

and F, respectively. Let Si and /7i represent, respectively, the

coordinate systems in S and fi" defned respectively by

_ Two intermediate reference_S] S 2 S 3 and f2 Z3 '

frames were introduced previously to permit describing the angular

velocity of each push rod relative to the stator; designate those

intermediate frames corresponding to the itu actuator assembly by

/_i and Qi. Another intermediate reference frame was previously

introduced between frames 4 and /i i ; designate this by T/.

Let each intermediate reference frame have a flame-fixed, dextral

set of unit vectors. Indicate the unit vectors for each of these flame-

fixed coordinate systems by using the corresponding lower case letter

^i

(__rj corresponding to /_i, etc.). The following, then, give the



expressions for the angular velocities of the various reference frames

and rigid bodies of S :

F_ ojAi ll_ f__ , P, __.._T, i ^i T_ (.oA, i ^i_ = = u2__Pl , = u3 t_.3 (6- 8)

S, ____R, i ^i R, __._Q, i ^i Qi o.jPi i ^i=U4S3, =u5_r 2, and _ =u6_ql. (9- 11)

Using the addition theorem for angular velocities, the angular

velocities of the rigid bodies of S are

S i (..oAi i ^ i i ^i i ^i i ^i i ^i= tt2p I +U3/_3 +U4S 3 +u5r 2 +tt6ql, (12)

s, mP, i ^i i ^i i ^i= U4S 3 +usr 2 +u6ql, (13)

and s_ .__mF, i ^ i i ^i ; ^ i
= + U4S3"F R5 r 2 -.I.-/t6q I --Zllf 3. (14)u2Pl + u3t_3 i ^; i ^i i ^i

BASIC ASSUMPTIONS

in the subsequent development of the ARIS equations of motion,
it is assumed that ARIS works as intended; i.e., that the ARIS

controller prevents the ISPR from exceeding its rattlespace constraints.
It is also assumed that the small-angle approximations hold for angles

q_. Angular velocities and angular accelerations are assumed to be

small as well. This means that the use of first-order linear

perturbations will permit the full nonlinear equations of motion to be

approximated accurately by a set of first-order linear differential

equations. Finally, it is assumed that the angular velocity of the stator

is negligible, and that the stator translational velocities and

accelerations are small.

LINEARIZED VELOCITIES OF THE CENTERS OF MASS

FOR THE RIGID BODIES OF

Represent by F__AB the position vector from arbitrary point A to

arbitrary point B. Define the following position vectors, using the
indicated scalars:

rFia_ i ^i i ^i rS, A_ i ^i r&e," i ^i
_ = lla 2 +lzal, _ =13 .p2, _ = p2P2, (15-17)

rata7 i ^i i ^i rF, F" i ^i i ^i i ^i
_ = al_al +a2a2 , and - = f, fl + f._ f2 + f__ f3 . (18,19)

First time derivatives of the appropriate position vectors, under

the stated assumptions, yield expressions for the velocities of the

centers of mass, for the seventeen rigid bodies. The following

expressions are the linearized velocities for those centers of mass.

(The pre-subscript indicates that the expressions are linearized; the

pre-superscript indicates the reference frame assumed fixed for

purposes of the differentiations.)

S_vP_ • i[ i_i +Rg_)(i= ] ,8); (20)_ =P21, - 4-1 ....

= i i i ^i i i i i ^i
S_A7 [_a_u__(a2+13)_4]___l+(alu3+alu4)P 2

+ 2u2-alu5+ + 3 t6__P3, (21)

I t 1
andSiv_F =[fill I I | _(V2 +]3)U4 1 I]^1

-- V2U3 + V3t/'5 ]---Pl

I 1 1 I 1 1 I 1 ^1 1 I I 1 1 I I ^1
+ flul v 3t + +v u +u 4_p +vu vlt _+v +l t _p

i i i i i i _ fi (23- 25)where Vl =fl'-12, v2 =f2-]1, and V3 -- 3'

LINEARIZED ACCELERATIONS OF THE CENTERS OF

MASS FOR THE RIGID BODIES OF

Taking the time derivatives of the respective linearized velocity

vectors yields expressions lbr the linearized accelerations of the

centers of mass, for each rigid body. Note that the linearized velocity

vectors may be used in this step---the full nonlinear accelerations need
not be determined. This is a tremendous savings of effort, which

would not be afforded if Newton's Second Law were applied directly,

instead of Kane's approach.

• ,i ^1'_ = tt4S_l (26)

= _ i .i ^i alt/4]---P2S}oA'* [--a_li_ (a_+13)u4]P__+(a(ti_+ i.i'l^i

[d.i ,.,+ 2u2 -alu5 + +13 u6 P3' (27)

and S}_ar" =[f_ti_--V_,i_-(V 1,+/l)ti_ '" ]^'.... +v3usl_Pl

+[- - (4+ v,, +
-I ^1

+ b_/j_ I.I +(V_ +/_)u6]p. C
-- VlU 5 --.

(28)

LINEARIZED PARTIAL VELOCITY VECTORS FOR THE

POINTS OF S AT WHICH THE CONTACT/DISTANCE

FORCES ARE ASSUMED TO ACT

The partial velocities and partial angular velocities are formed by

inspection of the relevant velocity vectors. These partial velocities are
then (and the order here is crucial) linearized by neglecting higher

order terms.

LINEARIZED PARTIAL VELOCITIES OF Pi"

For the i a' push-rod the linearized partial velocities are

i .4 i,4
Si P" Si P'* =--P2(_I +q4-s2) (29, 30)tV_r =_0 (forr=l,2,3), I_V4

s, p," i i^i s} vf i(qi^i i^i ,i )iv5 =p2q6sl, and v6 =P2 5sl-q6s2+s 3 .(31,32)

LINEARIZED PARTIAL VELOCITIES OF A[

For the ith arm the linearized partial velocities are

a i i_^i• s, A: ' '^' +(4+ --S}v_ =0, iv2 =-a2qeP 2 Jq3)P_, (33, 34)

S_vA[ =--(a_ +a(q_)___i +(a(--a_q_)___; +alq_ _, (35)

5}544:'=-{4 +_q_ +/3/./_; +(o_ -d_i2 -(a _ +a_46 +(g/5}_P;, (36,

S}vs4" =(4q_ +4q'6 +l;q'6_; -alq'6ff2 +(4_-a;_; , (37)

and t v6 = --a2q2---P2 + +alq2 +13 3' (38)

LINEARIZED PARTIAL VELOCITIES OF F °

For the flotor, the linearized partial velocities are

S I . F" 1 ^1 I ^1

1-_1 =f2fl-flf2'
(39)

4



_" /,, ,/A,+_lq_, ,, .,,/A,_ +V2 -V3q2 -JI ql )P3' (40)l_v2 =-_V2q2 +v3]p 2

+(,,i,
4,_( +qD-

+(vii-v_q_ +v_q_ + fTql_;-(viq_ +vlq_ +Uq_13, (42)

S_v_-" :_(4 +4) +v_3 + ./_i -q4_/312 -(_ +v[C/J +f214)/31, (43)

and"L4 <44)

LINEARIZED PARTIAL VELOCITIES OF F u

Define measure numbers for r F'G as follows:

F'F_ ^1 ^1 ^1
r_ = X f, f--I + YG L2 + ZF, f3" (45)

Since tVr - IVr +lLOU r ..,'

the linearized partial velocities for the umbilical attachment point

F u can be expressed as follows:

^1 ^1

Si F,, S, F'+yFu f _XFuf, S t Fu S I F* ZFu ^1 ^1t-Vl = I_1 --I _ ' 1_2 = l-V2 p2 + YFuP3, (47, 48)

S, F_ S i F'_YFu ^1 ^1 S I F_, S i F" ^l +XFu_12. 50)1_-'3 = 1_3 P--I+ XFuP2 ' IV-4 = IV-4 -- YF"P--I (49,

S l F, S i F. ^l ^1
St F,, S, F'+ZF,_I._XF,,_[ ,and l_V6 = i_'_'_v6-ZFuP2+YFuP_.3. (51,52)1_v5= iv5 _, _,

LINEARIZED PARTIAL VELOCITIES OF F i

The linearized partial velocities of F i are

S)v_ = 0 S,F,t_v2 =_(/_ +12q3)a3,i i ^i S, FF, i^i ,^,_, l-3 =/lal -/La2 ' (53-55)

i i i ^i i i i i i i i ^i
S,F, (li_l;)fi__i_(13q3+12)a2+[llqs+12(q2+q6)+l._qs_3, (56)

/V 4 =

i i i i i ^i q6"_a2+.) i i iSiF, [_l,(q2+q6)+13q6]_l+l_(q _ +i^i (12_llq3)__; ' (57)iv5 =

s, _, ,_-, ,,,c", ,_t,/_3.',_and iv6 = 13q2a2- +12q3 (58)

LINEARIZED PARTIAL ANGULAR VELOCITIES

FOR THE RIGID BODIES OF

The following are the linearized partial angular velocities for the

system.

For the i th pushrod: s7 e, 0 (for r = 1, 2, 3) (59)CO r ---_

S, P, ^i S, P, ^i S, P, ^i
1_..__4 =$3, 10")5 =£2, and 1°)6 =ql' (60-62)

Si Ai ^ i
For the i th actuator arm: S_ co A, = 0, t 0)2 = Pl ' (63, 64)

S_ ^i S, _ ^i S, Ai ^i S i A i ^i=t--3, I--(t)4 =$3' 1_5 =-r2' and 10)6 =---ql (65-68)

For the flotor: s}_ =-a_3 ' t_z =Pl, t--3 ' (69-71)

S I F ^1 S I F ^1 Si F ^ 1
1_O)4 =$3' 10')5 =r2' 10')6 = ql (72-74)

S'(oF =0 (r=l 6;i=2 ..... 8). (75)and I --r -- ' ....

LINEARIZED ANGULAR ACCELERATIONS

FOR THE RIGID BODIES OF ._

LINEARIZED ANGULAR ACCELERATION

OF ACTUATOR PUSH-ROD 4

sTc_e, .,^i .i^i .i ^i-- =u6p 1 +bt5___P2 +u4p 3 '
(76)

LINEARIZED ANGULAR ACCELERATION

OF ACTUATOR ARM Ai

.i ^i (ti_+ .i ^i (77)

LINEARIZED ANGULAR ACCELERATION OF THE FLOTOR /_

-i ^i
SI O(F = (/l_ +/'/6)i, .i ^i --.i ^i-- -- +u5L 2 +(/Jg Ul)Z3 . (78'

CONTRIBUTIONS TO THE SET OF GENERALIZED ACTIVE

FORCES DUE TO THE RIGID BODIES OF

CONTRIBUTIONS DUE TO THE FLOTOR

On orbit (i.e., neglecting the effects of gravity), the flotor is acted

upon by forces and moments due to the each Lorentz coil, actuator

arm, and umbilical; and by direct disturbances.

Let -F C and- M_C represent, respectively, the force and

moment exerted by the i th Lorentz coil (located at Ai3 ) on the flotor,

where F C' = F c,_fl, assumed to act at point F i , (79)

and M c, r F'A_ x F c' -F c' (1[ + i ^i__ = _ = 14)a3. (80)

Let F F, and M F, represent, respectively, the force and moment

exerted by the i th actuator arm on the flotor, at the i th cross-flexure.

Since F _ is a noncontributing force, it can be ignored in the analysis.

The total moment M r due to the eight cross-flexure springs has

value MF 8 i i ^i= Z/q q_ f3' (8I)
1

where k_ is the i th cross-flexure spring stiffness.

Let F U and M u represent, respectively, the force and moment

applied to the rotor by the umbilical; where the force is assumed to act

at rotor-fixed point F u . Umbilical force F U is given by the equation

F" =(-,,<,x,- c,_,)__,+(-k,_.,-c,.<<,)_L

+(-_, - c3.t,)__3+&; (82)

where _i is some appropriate stator-fixed coordinate system; xi, x 2 ,

and x 3 are the umbilical elongations in the respective __i (i = 1,2,3)

directions; F/, is the umbilical bias force in the home position; k I ,



k 2 , and k3are umbilical spring stiffnesses; and c I , c 2, and c 3 are

umbilical damping constants. Umbilical moment M U is given by

+ (83)
where _t, _32, and _3 are components of the umbilical angle of twist

in the respective __i (i = 1,2,3) directions; M r is the umbilical bias

moment in the home position; K"I, _2, and K:3 are torsional

umbilical spring stiffnesses; and '/1, '[2, and '/3 are torsional

umbilical damping constants.
D

Let F Dand M represent, respectively, the unknown

disturbance force and moment acting on the flotor. Assume F D to act

through the flotor mass center F*. Define Fi D and M/° to be the i 'h

components, respectively, of __FD and M D , componentiated in /vl-

In terms of the above, the flotor's contribution to the set of

generalized active forces, for the r'h generalized speed, is

s_ s: s_ s, 8ii^i
l_-- IV_r FU-g lVr :"l= y_r (--_F_')-.l- l_(_.(_MU-i-_-I-l_k qlZ3).(84)

The umbilical contributions to the 1 Q: 's , viz.,

S}vrF_ ._FU+S}_ .M u, are addressed in the following two sections.

The remaining terms of the t QF's are as follows.

I D Is,.:.:=:_r, -i,g, "}g._"- v_-- 3, (85, 86)t_vl

SI " Ft - {--: )-_-O, S} _t7' (--_):-F_ (1_-Jl-1_), (87,883tZ'l

SII(_ .(Sl_k_ilz: y--k,4-k?¢-k-k3q]_-k-_4¢-k_qil 5 , (89)

D 1 1 1 D 1 D 1 1 1
S, F" .._F =v3(ql-q3)Fl -v3< +/_ (vlq 3+v2-fllq_), (90)1_v2

s D D 1 1 D l-V2#___ M =M I +(ql-q3)M_, s, F, .(-:)=0, (91,92)

'}__ -(-_' ):0, S}__ •(_/dZi 3:0, (93,94)

1 I I D I 11 1 1 D
s, F" .FD=(_vlq__v,+flql)Fl +(vi-v_ +fJql)_, (95)i_'_v3 _

o o ,,.M =_, /__3 (96,97)

s}__.(-M_, )=F(,(I_ +1i4), (98,

s,t_.(81_i4!i)-klc_-k2ci_+k31qi'+k:¢-lq'¢, (99,

S1 F*.FD[,' 11- l ..I-v3(q2 -.}-q6)-- fl ql IF IIv4 _ =[-/3-Vlql-v2 ! I 1 1 1 O

1 1 1 1 I 1 1 I1 D 1 1 1 1 1
+[13(q3-q4-ql)+vi-_2_ +_q5 +f';ql_'2 +[-vl(q2 +q6)-v2qs]153n, (100)

s}_0_44. M D=(_ +q6)M_1 D _qsM ilD+ M_-] ,D (101)

i -- i i iS,F, .(__F()__F((I1 __), '}d'(-_",d'(-_)' (102, 103)
I_P4

8 i i_i s 8 i "^i

• ,_<4. (1o4)

I I I I I [

i_v.s

1 I 1 1 -D 1
+v2q3-:2_ Jr3 ,

s _<d

s_j

S l F"

IV6

(1053

. M___D=(c_I-_)MI D + M? -(4 + ql )M3O, (1063

•(-: ):: [,i<

" <.0 1o9."M<__=F_(/I +1414-q6), s, "' ^"

\-- /

I D I i I I I :I llp_;O,•: =v_(_-q3)F I -t-(I;q2-v_)laf)2-F(lJ-k-vlq3+v2-jlql)3 CII0)

;_ ii
.MD=S}_.M D ,.... s'.F'.(-_Fc )--l_'13qs,t_v6 (lll, 112)

8 i "^i s_ 8 i "^i

s}__.(__ )=0, and Sll_ ,(l_k14Z3_ #O_'(I_I4Z 3 (113,114)

Notice the coupling between the unknown-disturbance measure

numbers and the generalized coordinates. This coupling will make the

disturbance input matrix E [in Eq. (203)] time-varying.

UMBILICAL FORCE F U

Equation (82) expresses umbilical force F v in terms of

umbilical-elongation components x 1 , x 2, and x 3 , and their time

derivatives. These items must be re-expressed in terms of the

generalized coordinates and generalized speeds.

If the umbilical attachment point Fuis at Fuh in the home

position, then

xi = ( rS"_ -- rSuF"n). __i, for/=1,2,3. (115)

But rs_F_-r s_r"_ =r F'Z' = rstR +r fiF_ -r s_s" -r s"F'_, (116a,b)

where the right-hand-side terms can be expressed by
^1 ^1

r_SIFI =l_p_pl2--l_£lll --l;(ll2, r FiiFu =XFuZll-I-YFuZ2"I-ZFuZ3 (117, 118)

^1 ^1 ^1 SuF_ ^1 ^1 ^1
r s's" =XsuS _+ YsuS2 + ZsuS3, and r =x0s _+ 3bS2 +ZoS 3, (119, 120)

for appropriately defined coefficients.

Define now the following rotation matrix:

_, : #'21 r22 r23/1__. (121)

r31 r_2 r3_Jts3j

In terms of the __i coordinate system, Eq. (116b) can now be written as

_::.
1 I 1 1 I 1 I l+ 1,,fl[Cl+y#=(q_-qJ-q4)+zF.q.s-13q4+l,(_ q43]

where/x_r2, O _j._G-zv,(q_ +q_}-xy(q_-q_-q])-l_(q_+q_4)t (1233
tx3JL_' _2 r3 [ C3+O_-x,.)qJ+(YF-l;lq_ +qi)+l_qi J

for C l = XF. -- Xs. --1_ - x o, (124)

c2 =Yr, -Ys, +t_3-t_-yo, and C3=z & -Zs, -Zo. (125, 126)

Differentiating,

6



ix,/ [,,,r,,,31( 3 ) ,4 ,(, 4).
t&J Lr,, r32 r3,][ 02--Xr.}'_+(>F--Z;l"_+d6l+tJ"_J

Using Eqs. (82) and (123) through (127), a linearized expression could

now be written straightforwardly for the umbilical force F U .

UMBILICAL MOMENT M u

Equation (83) expresses umbilical moment MUin terms of

angle-of-twist components 01, 42, and 43, and their time

derivatives. These items must be re-expressed in terms of the

generalized coordinates and generalized speeds.

Let 0_h, represent the rotation of the flotor, relative to the stator,

from the home position. _n¢ is the rotation axis, and q_ is the angle of

that axis• Note that 0i =Oh¢._,fori__- = 1,2,3• (128)twist about

^1 ^1 ^1

Express he as fi,=g,f+g2f_2+g3f 3. (129)

Define rotation matrix Q by ["_ / --_f_ _=[Q]_-_I2_' (130)

[z3j
The linearized 3x3 rotation matrix t Q has elements t Qij defined as

follows:

,I i[1 -ql +q_ +ql _q_ ^

J f_ = q;-q_-ql 4, 1 q_+qJ6 1s_[ (131)
/f q5 -q_-q_ I [s 3J

3

For small (_ it can be shown (Salcudean, 1991) that

[ 0 -g3 g21 =lQ-tQrO(l+trlQ)'/2"
0 g3 0 -gl (132)

k-g2 gl

where the post-superscript r indicates matrix transposition and tr IQ

represents the trace of I Q. Substitution from Eq. (131) into Eq.

(129), and simplification, yields gl = --_'(q' +2 q16), (133)

, , l(q; ,
g2 =-_'qs, and g3 =_" -q3-q " (134, 135)

I /

Substituting from Eqs. (133)-(135) into Eq. (129), and transforming

into the -Jl coordinate system by use of t Q, one obtains the following

expression for the spin axis:

^ I 11^1 1^1 I q4/__3]" (136)2 --qSS2,no = +q6_l +(ql-q3

Since I_, has unit length, tO=[(q_+a)24qt) 2+(4-4-ql)2f/2" (137)

Use of Eqs. (128), and (136) leads to the following linearized forms

for angular position and rotation rate:

[r,,

02_=1r2' r22 '_'/I, q,[' (138)
03J Lr_, r32 r33J [qJ- 3- 4J

r,,r,,r,qr ]
4

and r22 r2311, i dt (139,
[*,J hr,, r,2 r.j ["1 -' _- 4J

From Eqs. (84), (138), and (139), a linearized expression could

now be written straightforwardly for the umbilical moment M___U . The

flotor's contribution to the set of generalized active forces, for the /h

generalized speed, could then be found by substituting the expressions

for F U (previous section) and M___U , into Eq. (84).

CONTRIBUTIONS DUE TO THE ACTUATOR ARMS

The forces and moments acting on the ith actuator arm are due to

the respective Lorentz coil (located at A i3 ), the flotor (through the

i th cross-fexure), and the respective push-rod (through the upper

stinger). The coil force F C is the only contributing force. The

contributing loads, in the above indicated order, are as follows:

F q = F C_a_*[, assumed to act at point Fi , (140)

(,i i )^i FC, ^i = ( i )^iM_MC=EF'A_xFC'= l+14a2x a I -FG l[+14a 3 , (141)

M F, i i ^1 M4 k i i^i i i ^,- =-klqlL3, and =- 2q2p 1 -k3q3t_, (142, 143)

i
where /_ and l_ are pertinent geometric lengths, and k_ and k3are

pertinent upper-stinger spring stiffnesses.

In terms of the above, the contribution for the ith actuator arm to

the set of generalized active forces, for the/h generalized speed, is

IQ & s a_ fci s ai ( Ci M__M__F_):= IV--r " " + I_r " mAi +m . (144)

The individual terms of the t _)A_ 'S are as follows:

S FI.FC, A iIV 1 -- =0, S __.._1 .(M____.Ai -F M Ci -M...M_F' )=O, (145,146)

S F, .F CIE2 -- =0, S_o_' '(M & +M C' --MF')="4c_q_, (147, 148)

S F, . F C = Fql_ (149)1_3 --

1¢.D3 • M & + -- =klq I -k3q 3

s F, .FC, =FG(I[_I_), (151)iv4 _

St__A' .(M A' +M q -M__ 6 )=-k;q;-FC'(ll +,_), (152)

s F,.FC, =_Fq[l[(qi 2 +q;)_/;q_,] (153,iv5 __

I_ Ai .(M A' +M C` -M Fi )=-Fc' (1[ +li4_q_ +q;), (154)

S al .F c,tv6 _ =0, and ___' '(M4 +Mc;-MF')=--/_. (155,156)



Notice the coupling between the control inputs and the generalized

coordinates. This coupling will make the disturbance input matrix B

[in Eq. (204)] time-varying.

CONTRIBUTIONS DUE TO THE PUSH-RODS

The contributing loads on each push-rod are momentsM P' and

-M ai , where (using pertinent lower-stinger stiffnesses)

M R i i^i i i^i i i^i
__ = -k4q4s 3 - ksq5r2 - k_q6q I . ( 157)

The contribution for the ith push-rod to the set of generalized

active forces, for the ,sh generalized speed, is

,o_::__o,_(_, -_",) (158)
The individual terms of the t Qr e' 's are as follows:

Sl__r¢d')Pi "C _--Pi --MAi-- )=0 (r.-_1,2,3), (159)

1_4 " -M_M- =k3q 3 -k4q4, (160)

S Pi .(_m_.Pi MA,)= i i- -ksq 5 (161)/ --0)5 -- '

and __ k2q 2 - k6q 6 . (162)

CONTRIBUTIONS TO THE SET OF GENERALIZED INERTIA

FORCES DUE TO THE RIGID BODIES OF

Represent by l_ / A,* the central moment/product of inertia of the

ithactuator arm for the j and k body-fixed coordinate directions

^i ^i

aj and at,. Define push-rod inertias I_/p'" analogously, where the

single subscript indicates that the axes are assumed to be principal

IF/F *
axes. Let jr, represent the central inertia scalar of the flotor for

^1 ^1

the flotor-fixed coordinate directions fj and f--k ' Use the symbol H

to represent an angular momentum vector. Associated post-

superscripts on H have the same meanings as for the inertias. The

contributions to the generalized inertia forces for S can now be

expressed•

CONTRIBUTIONS DUE TO THE PUSH-RODS

/ , "_p,
The contributions [I Qr ) to the generalized inertia forces due to

the i th push-rod are as follows:

(),e;3-s'¢:--,_, /,--r _O

'- t-r - - (163)

(for r = 1,2, 3;i = 1..... 8),

:: /-.V4 l-- raP, -- J't-/_O)4 / =

(IQ;_ :s' P," ( m SiaP," ]t_s__ . (_t_e,/e," _
(165)

• _s p, .[_/7_,/p,"(,_:/':--',__o<(-m<S_a<"j+,<o6 )

CONTRIBUTIONS DUE TO THE ACTUATOR ARMS

(166)

The contribution (#Qr )A,* to the generalized inertia forces due to

the i th actuator arm, for the r m generalized speed, is

(,Q;)A, S, A[ . _#.#IATS}aA_ S O,)_r .(_II[.IA_IA_"=,'-'r[ -)_- I (167)
(.)_,Then the individual, nonzero terms of the !Qr 's are as follows:

S i 2( " i 9 .i i i i .i i i .i

713 114] , (169)

S, A] S}aA _ {[(01) 2 (0_)21[_+
+ [(al)2+ a_(a_+lj)],ii4} (170)

{ ) •s_. ___/_"=_d_.(,_i÷u;)_d_,_

/ {[(';a_: a_)_ ' ' "!IV__4 . = --ilIA, -it- (./2(a2 +/_ tt.:I

+ a + a_+ 3 u4 , (172)

(o ,).,}i i.i i i+l 3 u 6 (174)-ala2u2--al 2

SA,_<.,.(_,__.A,'<]: _,,,,,,_,(,_+,_)_,_:,,__,_,,,,(,_+,_),(,7_,
Si A[ (_mA S, aA, I {a_(a:+,_) .iIv__.6• , -- = -- mA, 1.12

+(<,_+,;f,_;-a:(._+,;).,,,_o,

and S_Ai .(--,I]IAi/A_ _I¢d0_2 .(--,I]IAIIIA_ ). ('77)

CONTRIBUTIONS DUE TO THE FLOTOR

(.1 _The contribution t Qr to the generalized inertia forces, for

the r th generalized speed, is

(,_:)_s,_.(_.,/j._,<o_.___,_):=,__. y ,_, [ ,_ . (178)



( .)FThen the individual terms of the I Qr 's are

+{_;,v,-;_,41,_-b'(,,_+,_)+;,v,l,_+,-,+_+J,'+'},(179)

( • F/F''_ FIF'[. i .i] .FIF* .i .FIF*

_,__l-,_,+,):,;, t_+_+,3__+,_3(,_+u_-,_i),<180_

s__.I_,L-//")_-_,,,,,%_+,_)_m,_,-_-,_,-k+,_4-,.4).(,82)

/ ) {I" "7'"'SI rE" --mFS7 aF" --f272 --fl Vl +• /11-viv3/121-3 -- : --DIF

[(m2+ --VlVsU6j _, (183)

__O_.(---t_lF/F*l=--l_/F*(t" _ +t'_)--IF2 If* {_--IF/F*(f_+f_i4--t'tl), (184)

(185)

(186)

_fllV1 .1 I 1-I I(Ti) 2 _(71 _)1
IUl --71V3/12 + +V +1 liJ

,,,/A4-73_V 2 _ . 717396_,

,,.:°,__5• _ f2k,_,i/-vlvi,,i_

-,+,_,_j-,,_(,,_+,j)_,+l(,,i)_+(,,_)_1_-vl(,,,+,_)_,},,,8_

.FIF* .i .FIF'[.i .i _Ul) ' (188)- 122 95 - 123 _/13 +/14 • i

S'IaF" =--gnF fl V3/11 +SI_F* , --mE _
1

+7'(7_+t'_.,' ' ' " '-'"3)1i2 --7173 /13 --7173/14

/1],;I [(V +,j)2 (7_)27.1) ' (189)vi(,,_+,,.5+_ + ,6

and St_F'C--tl;IVIF*)=--IIFir*({_+FX'6 )

.F IF* .i _ liFt l:*_i; + l'_i4-ti[) (190)-- 112 /15

EQUATIONS OF MOTION FOR THE SYSTEM

KINEMATICAL EQUATIONS

There are 48 kinematical equations for the system, one for each

generalized speed: t,_ = q_ (tor j = 1..... 6; i = 1..... 8). (191)

DYNAMICAL EQUATIONS

Six dynamical equations are obtained using the following

process. First, add the respective contributions of the 17 rigid bodies

to the set of holonomic generalized active and holonomic generalized

inertia forces, for each generalized speed (i.e., r=l ..... 48). The

holonomic generalized active force for the r_ngeneralized speed is

F = _(Fr) j (192)
)=l

where (F_) _ is the contribution to the set of holonomic generalized

active forces due to thef _ rigid body. That is,

+ _Q_' + ,_,t Q_' (193)
i=l i=1

Likewise the contribution to the set of holonomic generalized inertia

forces is

171.'j *)V 8 )S, 8 ,F;= ZtF, ) :(iQr "[-Y=(IQ; -t-___(,Q;) I_' (194)

j=l i=1 i=1

Second, develop the relationship between the dependent and the

independent generalized speeds in the form:

i 6

/1j = Y_A_._ul,.+B_(i=2 ..... 8;j=l ..... 6;r=7 ..... 48). (195)

Where in the above equation/1J are the six independent generalized

speeds, and u s are the 42 dependent generalized speeds• A,,. is a

42x6 matrix, derived from the nonholonomic constraint equations

(see next section). The nonholonomic and holonomic generalized

active forces are related to each other as follows:
48

F, = F, + Y F_a_,(r =1 ..... 6). (196)
s=7

Similarly, the nonholonomic and holonomic generalized inertial forces
are related to each other as follows:

/_7 = F7 + £ F.*A_, (r = 1..... 6). (197)
x=7

Kane's Dynamical Equations, then, are F_ + F_* = 0,

for r=l ..... 6.

(198)

CONSTRAINT EQUATIONS

The kinematical and dynamical equations together are fifty-four

in number: 48 kinematical, 6 dynamical. Since the complete set of

equations for an n-degree-of-freedom system numbers 2n, and since

the system S has 48 degrees of freedom, 42 more equations are

needed to describe completely the motion of the system• These

missing equations are the holonomic constraint equations (in

nonholonomic form) for the dependent generalized speeds

/1_j (i = 2 ..... 8; j = 1..... 6).

Since the velocity and angular velocity of the flotor center of

mass F'is the same irrespective of the actuator path chosen for



describingitsposition,asetofconstraintequationscanbewrittenin
vectorformusingthefollowing:

S'IVF"- =l ( S'drS'F-'_ts'll:F'dtJ _ (i=l,j=2 ..... 8), (199)

Si (2) F'l S: F"and = t__m (i=l,j=2 ..... 8). (200)

If one expands Eqs. (199) and resolves them into a comrnon

coordinate system (here, the _J_icoordinate system), one obtains the

following twenty-one (motion) constraint equations:

-- (V_ --/_)fl I -['Vlf2jl'

1 1 l 1

v3f_: -v_f#

- +04 +
(i=

T .

ul
1

U2

u_

u_

14

R I6

2 ..... 8;

fj:, - f,%
i i i i

- v3f4j + Vzf_ j

i i i i

-v2fu +v_f_ ,

-13)f_, + vtf;/
i i i i

v3fu -vtf{,

_ +l'_)f3j-vaf_ i

= 1,2,3).

1T Ill

!

U 4

l

R 5

1

U 6

(201)

Similarly, if one expands Eqs. (200) and resolves them into a common
^

coordinate system (here again, the f coordinate system), one obtains
--I

the remaining twenty-one (motion) constraint equations:

- I " r . - fi

fl_ 14_ alj

fl 1 ,i3j u3 J 3)

flj UI .i5 J2j

fl_ ul :i6. _ alj a

(It should be noted

nonholonomic form,

geometric.)

!

u 1
I

II 2

I
U3

I

U 4

!

u 5
I

_R6

(i = 2,...,8;j = 1,2,3). (202)

here that, although Eqs. (201, 202) are in

the constraints they represent are actually

STATE-SPACE FORM OF THE EQUATIONS OF MOTION

The dynamical, kinematical, and constraint equations can be

arranged in the following state-space form:

;}I: t:,}[1 [o]['o°1'
where the state vector consists of the 48 coordinates q and the 6

independent generalized speeds t! l , associated with actuator #1; the

constant submatrices M, K, and C are system mass, stiffness, and

damping matrices, respectively; the symbols I and 0 represent,

respectively, an identity matrix and a zero matrix of appropriate

dimensions; vector i contains the control currents to the Lorentz coils;

and vector d is the disturbance vector• The input matrices B and E

are time-varying matrix functions of the coordinates. N is a constant

submatrix that incorporates the kinematical equations and the

holonomic constraints.

The disturbance term [E] {_d} accounts for the umbilical bias

force F/, and moment Mr,, and the unknown direct disturbance force

F o and moment M D Recall that in the development of the

foregoing equations the angular acceleration of the stator was assumed

to be negligible. However, the translational acceleration of the stator,

although presumably unknown, cannot be neglected. In fact, that

acceleration is the source of the umbilical contribution to rotor g-

jitter. To include this indirect disturbance contribution, one simply

adds an (unknown) indirect acceleration disturbance term a t to each

of the Eqs. (26), (27), and (28). Along with the other disturbances,

this indirect disturbance will appear in the final term of Eq. {203).

MODEL VALIDATION

AUTOLEV software, marketed by Online Dynamics, Inc., was

used to create a full nonlinear model of ARIS, including the actuator

(rigid-body) dynamics. AUTOLEV was then used to develop and
verify the linearized equations presented in this paper.

The linearized model (without umbilicals) was implemented in

MATLAB m-files, using actual values of system parameters. The

mathematical model was then checked for kinematical consistency.

The procedure used was first to compare the eight position vectors

from a common point on the stator to the flotor center of mass, as
traced through the eight actuators, with the flotor centered in its home

position. The eight position vectors matched exactly. The procedure
was repeated with the flotor moved from its home position, in six

degrees of freedom. The position vectors tracked within acceptable
limits. The linearized MATLAB model was compared with the full

nonlinear AUTOLEV model. The static response of the linearized
model tracked the static response of the nonlinear model, for small

angles.
An independent model was developed using the DENEB

Envision software, with current CAD models of an ARIS-outfitted

ISPR. This model was used as an independent (static) check of the
actuator kinematics.

FUTURE WORK

The next tasks will be the addition of umbilical forces to the

AUTOLEV and MATLAB equations, and the dynamical validation of

the MATLAB model. The procedure will involve simulating the

application of various loads to the flotor, and verifying that the eight

position vectors track in this dynamic simulation. System dynamics

will be incorporated into the Envision model, along with the capability

of state-space discrete-time control. The MATLAB and Envision

models will then be available, respectively, for centralized, state-

space/optimal controller design and for closed-loop system simulation.
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